Innate immunity signaling: cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein.
نویسندگان
چکیده
Ca(2+) rise and nitric oxide (NO) generation are essential early steps in plant innate immunity and initiate the hypersensitive response (HR) to avirulent pathogens. Previous work from this laboratory has demonstrated that a loss-of-function mutation of an Arabidopsis (Arabidopsis thaliana) plasma membrane Ca(2+)-permeable inwardly conducting ion channel impairs HR and that this phenotype could be rescued by the application of a NO donor. At present, the mechanism linking cytosolic Ca(2+) rise to NO generation during pathogen response signaling in plants is still unclear. Animal nitric oxide synthase (NOS) activation is Ca(2+)/calmodulin (CaM) dependent. Here, we present biochemical and genetic evidence consistent with a similar regulatory mechanism in plants: a pathogen-induced Ca(2+) signal leads to CaM and/or a CaM-like protein (CML) activation of NOS. In wild-type Arabidopsis plants, the use of a CaM antagonist prevents NO generation and the HR. Application of a CaM antagonist does not prevent pathogen-induced cytosolic Ca(2+) elevation, excluding the possibility of CaM acting upstream from Ca(2+). The CaM antagonist and Ca(2+) chelation abolish NO generation in wild-type Arabidopsis leaf protein extracts as well, suggesting that plant NOS activity is Ca(2+)/CaM dependent in vitro. The CaM-like protein CML24 has been previously associated with NO-related phenotypes in Arabidopsis. Here, we find that innate immune response phenotypes (HR and [avirulent] pathogen-induced NO elevation in leaves) are inhibited in loss-of-function cml24-4 mutant plants. Pathogen-associated molecular pattern-mediated NO generation in cells of cml24-4 mutants is impaired as well. Our work suggests that the initial pathogen recognition signal of Ca(2+) influx into the cytosol activates CaM and/or a CML, which then acts to induce downstream NO synthesis as intermediary steps in a pathogen perception signaling cascade, leading to innate immune responses, including the HR.
منابع مشابه
Innate Immunity Signaling: Cytosolic Ca Elevation Is Linked to Downstream Nitric Oxide Generation through the Action of Calmodulin or a Calmodulin-Like Protein
Ca rise and nitric oxide (NO) generation are essential early steps in plant innate immunity and initiate the hypersensitive response (HR) to avirulent pathogens. Previous work from this laboratory has demonstrated that a loss-of-function mutation of an Arabidopsis (Arabidopsis thaliana) plasma membrane Ca-permeable inwardly conducting ion channel impairs HR and that this phenotype could be resc...
متن کاملDiazeniumdiolate Mediated Nitrosative Stress Alters Nitric Oxide Homeostasis through Intracellular Calcium and S-Glutathionylation of Nitric Oxide Synthetase
BACKGROUND PABA/NO is a diazeniumdiolate that acts as a direct nitrogen monoxide (NO) donor and is in development as an anticancer drug. Its mechanism of action and effect on cells is not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS We used HPLC and mass spectrometry to identify a primary nitroaromatic glutathione metabolite of PABA/NO and used fluorescent assays to characterize drug ...
متن کاملExtracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2.
Extracellular calmodulin (ExtCaM) exerts multiple functions in animals and plants, but the mode of ExtCaM action is not well understood. In this paper, we provide evidence that ExtCaM stimulates a cascade of intracellular signaling events to regulate stomatal movement. Analysis of the changes of cytosolic free Ca2+ ([Ca2+]cyt) and H2O2 in Vicia faba guard cells combined with epidermal strip bio...
متن کاملP26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملA CaMKII/Calcineurin Switch Controls the Direction of Ca2+-Dependent Growth Cone Guidance
Axon pathfinding depends on attractive and repulsive turning of growth cones to extracellular cues. Localized cytosolic Ca2+ signals are known to mediate the bidirectional responses, but downstream mechanisms remain elusive. Here, we report that calcium-calmodulin-dependent protein kinase II (CaMKII) and calcineurin (CaN) phosphatase provide a switch-like mechanism to control the direction of C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 148 2 شماره
صفحات -
تاریخ انتشار 2008